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ARTICLE

Patterns in transitions of visual attention during baseline driving and during
interaction with visual–manual and voice-based interfaces

Bryan Reimera, Bruce Mehlera, Mauricio Mu~noza, Jonathan Dobresa, David Kiddb and Ian J. Reaganb

aAgeLab, Center for Transportation & Logistics, Massachusetts Institute of Technology Cambridge, MA, USA; bInsurance Institute for
Highway Safety, Arlington, VA, USA

ABSTRACT
Voice interfaces reduce visual demand compared with visual-manual interfaces, but the extent
depends on design. This study compared visual demand during baseline driving with driving
while using voice or manual inputs to place calls with Chevrolet MyLink, Volvo Sensus, or a
smartphone. Mean glance duration and total eyes-off-road-time increased when using manual
input compared with baseline driving; only eyes off road time increased with voice input.
Confusion matrices developed with hidden Markov modelling characterise the similarity of
glance sequences during baseline driving and while making phone calls. Glance sequences with
the MyLink voice interface were misclassified as baseline driving more frequently than the other
voice interfaces. Conversely, glance sequences with the Sensus and smartphone voice interfaces
were more often misclassified as manual phone calling. Thus, the MyLink voice interface not
only reduced the overall visual demand of placing calls, but produced glance patterns more
similar to driving without another task.

Practitioner Summary: The attention map and confusion matrix methodologies provide ways
of characterising similarities and differences in glance behaviour across secondary task condi-
tions, complementing traditional temporally based metrics (e.g. mean glance duration, long dur-
ation glances) while addressing some of the limitations of total-eyes-off-road-time (TEORT) for
comparing secondary task behaviour to baseline driving.
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1. Introduction

Naturalistic driving research suggests that the per-
formance of visual–manual activities with an electronic
device beyond the core driving task are associated
with a significant 5-fold increase in crash risk relative
to driving with no distractions (Kidd and McCartt
2015). This finding mirrors a growing literature of
laboratory, test track, and on-road investigations into
the dangers of driving while engaged in secondary
activities (for a review, see Caird et al. 2014). Such ele-
vated risk can be attributed, at a minimum, to a
reduction in the ability of drivers to appropriately
detect and respond to emergent on-road events that
require timely decisions, as well as subsequent hyster-
esis (as in Jansen et al. 2016). One of the most readily
measurable indicators of such multi-tasking engage-
ment is the orientation of the eyes; that is, to or away
from the road. Time and transition based measures of

eye movements as an indicator of visual attention allo-
cation have a relatively deep literature, even when
constrained to the context of driving (for an overview,
see Mu~noz et al. 2016). The most commonly-used
strategies include measuring the time visual gaze is
directed away from the forward road (NHTSA 2013),
and the time that visual gaze is directed to a driver-
vehicle interface (see DFTWG 2006) such as the in-
vehicle radio, climate controls, etc. As aggregate gaze
measures (e.g. mean single glance duration, total
eyes-off-road time across a task, etc.), these
approaches abstract visual allocation over time to pro-
vide estimates of higher-order driver behaviour, such
as gaze strategy and attention allocation.

Aggregate gaze measures inherently discard valu-
able variance related to operator behaviour. By col-
lapsing across epochs of time and across the complex
patterns of transitions between regions of interest that
are indicative of active building of situational
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awareness, aggregate measures are unable to describe
the distribution of attention over time and space.
A growing body of literature suggests that time
(Seppelt et al. 2017; Lee et al. 2017) and spatial
(Mu~noz, Reimer, and Mehler 2015; Mu~noz et al. 2016)
considerations may provide deeper insight into driv-
ers’ allocation of attention in-situ in a framework that
supports more cohesive management of scarce human
resources (see also Yuan, Liu and Fu 2018). Certainly,
in pursuit of understanding the strategies deployed by
drivers in managing perception and action between
multiple tasks, analysis of allocation of glances across
the information-bearing regions associated with both
driving and driver-vehicle interfaces and other tasks
may provide deeper insight into attentional strategies
deployed in various driving conditions. The present
work extends upon earlier efforts that explored two
promising methods that supplement aggregate gaze
measures. The first, Attention Map glance transition
matrices (Mu~noz, Reimer, and Mehler 2015), provides a
quantitatively based, qualitative approach for visualis-
ing differences and similarities in how glances are dis-
tributed across a range of locations during a period of
interest. The second uses machine learning and hid-
den Markov models (HMM), to infer driver attention
allocation from sequences of glances (Mu~noz et al.
2016). Both approaches use glance behaviour to pro-
vide insight into attentional strategies.

1.1. Background

The extrapolation of interpretable driver behaviour
data from low level time-series telemetry data (as dis-
cussed in He et al. 2012) is a task well suited for data
visualisation and machine learning. Decomposing raw
data to discrete states and transitional relationships is
a long-standing approach used to understand com-
plex time-series data. These approaches have recently
been used in on-road data (Mu~noz et al. 2016). In
other efforts, He et al. (2012) used a HMM to infer
long-term driving strategy by directly sampling short-
term samples of driving behaviour such as braking
force, accelerator pedal position, and steering wheel
angle during events such as negotiating a turn and
obstacle avoidance (see Khan and Lee 2019 for a
review). Mu~noz et al. (2016) inferred the use of differ-
ent in-vehicle interfaces by directly sampling from
glance region and transitions during single task driv-
ing and when interacting with the vehicle’s radio
using either the visual–manual interface or through a
voice-based interface. In both studies, the HMM
approach was very accurate, which suggests that

these models can infer complex driver behaviours to a
degree which extends beyond individual differences,
that is, a single HMM was trained across different driv-
ers for a given task. The assumptions from using
HMMs in this scenario are thus twofold: (a). there are
common, basic glance patterns that can be predicted
in the first place, and (b). the gaze dynamics have an
ergodic nature, that is, learning a task at two different
points in time has little or no impact on the quality of
the trained model. It has been proposed that abstrac-
tion layers over raw data may be necessary in achiev-
ing high recognition rates (Pentland and Liu 1999).
Abstraction of raw eye movements into glance regions
is an approach used by Mu~noz et al. (2016).

In-vehicle interfaces often draw on many of the
same attentional resources as driving itself (Wickens
2002), and so use of both voice-based and visual–ma-
nual interfaces concurrent with driving place demands
on attentional resources and lead to some degree of
elevated workload. Properly implemented voice sys-
tems are not as demanding as their visual–manual
counterparts (Chiang, Brooks and Weir 2005; Dobres et
al. 2016; Reimer and Mehler 2013; Mehler et al. 2016;
Sawyer et al. 2017), but the exact impact of this still
increased demand on driving performance and crash
risk is still a matter of contention (Hancock and
Sawyer 2015; Strayer et al. 2015; Mehler et al. 2016;
Reimer et al. 2016; Li et al. 2021). What is objectively
evident is that vocal interaction is paired with varying
degrees of visual and manual interaction in many cur-
rent production voice interfaces (Reimer et al. 2014;
Sawyer et al. 2014; Mehler et al. 2016), creating hybrid
systems that are perhaps best characterised as multi-
modal (Reimer et al. 2016). This reality should high-
light the qualified nature of the often stated assertion
that voice-recognition systems per se allow drivers ‘to
keep their hands on the wheel and eyes on the road’.
On the other hand, it is largely an open question as to
what extent off-road glance behaviour, when it does
occur during interactions with such systems, is qualita-
tively equivalent to that which takes place during
interaction with visual–manual interfaces.

Gaze measures do reveal that the way attention is
allocated when interacting with various interfaces are
not identical to the way it is allocated when just driv-
ing (Dobres et al. 2016; Mehler et al. 2016). However,
the ways in which these metrics might be best inter-
preted are not always clear when considering voice-
based interfaces (DFTWG 2006; NHTSA 2013). While
off-road glance measures such as mean single glance
duration and the percentage of long duration glances
(> second seconds) suggest advantages for some
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voice-based interactions over available visual–manual
interfaces, the total time the eyes are off the forward
road is harder to interpret, particularly if guidelines
developed for assessing visual–manual interfaces are
applied. This is highlighted in longer duration voice-
based tasks such as address entry into a navigation
system where the total time that a driver’s eyes are
directed at a location other than on the forward road
can easily exceed the NHTSA 12 s guideline for pure
visual-manual interfaces (Reimer and Mehler 2013;
Reimer et al. 2016; Mehler et al. 2016;).

As previously mentioned, Mu~noz, Reimer, and Mehler
(2015) and Mu~noz et al. (2016) used an on-road dataset
that provided samples of single task driving and periods
when drivers also interacted with the vehicle’s
embedded radio using either the visual-manual interface
or a voice-based interface to explore driver behaviour
by analysing glances to multiple locations inside and
outside the vehicle and the transition patterns between
them. The results demonstrated how patterns of glances
between locations inside and outside the vehicle when
using voice-based interfaces more closely resembled
glance patterns when drivers were ‘just driving’ and
could be distinguished from glance patterns during vis-
ual-manual interactions with the vehicle’s radio (Mu~noz,
Reimer, and Mehler 2015). Examining how driver gaze
moves between multiple locations inside and outside of
the vehicle while interacting with an interface and driv-
ing may supplement aggregate measures to character-
ise important aspects of driver behaviour. First, by
showing the degree to which visual behaviour while
using an embedded infotainment interface (or portable
device such as a smartphone brought into the vehicle)
is distinguishable from driving alone, the methods may
arguably assess the impact of the interface relative to
‘baseline’ allocation of attention when drivers are not
interacting with the device. Further, the approaches
may provide deeper insight into the impact of various
systems on attention allocation. Finally, accounting for
glances to mirrors and other regions off the forward
road yet relevant to the driving task (other than to the
interface under study) may better indicate the driver’s
ability to maintain situational awareness when using
multi-modal interfaces. Building on previous work of
Mu~noz, Reimer, and Mehler (2015) and Mu~noz et al.
(2016), the present study extends the same analyses to
consider a different on-road dataset for which extensive
methodological details are provided in earlier publica-
tions (Mehler et al. 2016; Reimer et al. 2016). The data-
set consists of two different vehicles, a different
secondary task (initiating a phone call from a saved list
of phone contacts using either a visual-manual or a

voice-based interface), and the pattern of glances when
drivers perform tasks using the vehicles’ embedded
interfaces or the voice and visual–manual interfaces of a
smartphone mounted on the dashboard.

2. Methods

2.1. Participants

The analysis sample consists of 80 participants equally
distributed by gender and age across two vehicles (40
each vehicle). The age distribution ranged from 20 to
66 years with an equal number of participants distrib-
uted across four age groups (18–24, 25–39, 40–54, 55
and older), conforming with NHTSA’s (2013) recom-
mendations for the assessment of embedded in-
vehicle systems (see Mehler et al. 2016 for detailed
breakdown). Cases were only included in the analysis
sample if usable driving performance, glance, and
physiological data were available and the drive did
not include heavy traffic, adverse weather conditions,
or other characteristics at variance with relatively typ-
ical steady-state driving.

Participants were recruited through online and news-
paper advertisements in the greater Boston area.
Participants were required to have been licenced for a
minimum of 3 years, self-report driving at least 3 times
a week, and be in relatively good health for their age.
Also, individuals were excluded if they self-reported
being involved as a driver in a police-reported crash in
the past year, were positive for any of a range of serious
medical conditions (e.g. a major illness resulting in hos-
pitalisation in the past 6months, a diagnosis of
Parkinson’s disease, a history of stroke) or were taking
medications that might impair their ability to drive
safely under the study conditions (e.g. anti-convulsants,
anti-psychotics, medications causing drowsiness).
Recruitment procedures and the overall experimental
protocol were approved by MIT’s institutional review
board, and compensation of $75 was provided.

2.2. Apparatus

A 2013 Volvo XC60 equipped with the Sensus infotain-
ment system and a 2013 Chevrolet Equinox equipped
with the MyLink infotainment system were used as
study vehicles. No modifications were made to these
production user interfaces. A Samsung Galaxy S4
smartphone, model SCH-1545 (released March 2013)
running Android 4.3 (Jelly Bean), was paired to each
vehicle’s embedded system via the vehicle’s Bluetooth
wireless interface. The smartphone was attached to
the centre stack of each vehicle using a commercially
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available mount. The distance and angle of reach to
the smartphone varied somewhat between the two
vehicles due to differences in the available mounting
surfaces (see Reimer et al. 2016). Five video cameras
mounted in the vehicle interior provided views of the
driver’s face for primary glance behaviour analysis, the
driver’s interactions with the vehicle’s steering wheel
and centre console, the forward road (narrow and
wide-angle images), and the rear road. Video data
were captured at 30Hz for the face and narrow for-
ward road cameras and 15Hz for the remaining cam-
eras. Both vehicles also were instrumented with a data
acquisition system to record vehicle telemetry data,
driver speech and audio, and signals from a physio-
logical monitoring unit. Analyses of these data are
reported elsewhere (Mehler et al. 2016; Reimer et
al. 2016)

2.3. Tasks assessed

The full experimental protocol included extended peri-
ods of single task driving (highway driving when par-
ticipants were not also engaged with the vehicle or
smartphone-based infotainment systems), and periods
when participants were asked to engage in secondary
infotainment system interactions while driving. The
secondary tasks included using voice-command based
interfaces to enter addresses into the embedded
vehicle and smartphone navigation applications, and
using voice-commands or the visual-manual interface
to place phone calls to contacts stored in the smart-
phone with the embedded vehicle interface and the
smartphone. A set of manual radio tuning tasks were
also presented during the final portion of the drive.

Only data from the phone contact calling task were
considered in this analysis. The contact calling task
was completed in a similar manner with the MyLink
and Galaxy S4 voice interfaces. After enabling the
speech recognition system, the driver stated the word
‘Call’ followed by the contact name and number type
(e.g. mobile, work), if applicable. In contrast, when
using the Sensus system the driver had to state a ser-
ies of context-specific voice commands to navigate
system menus until the contact and number type was
selected. When completing the contact calling task
using the visual-manual interface with MyLink, the
driver had to use a rotary knob and inset push button
to make selections from option lists presented in sys-
tem menus. The driver had to first access the phone
subsystem, then the correct alphanumeric bin contain-
ing the target contact, and finally the contact name
and number type if necessary. With Sensus, the driver

used a rotary knob to scroll through the full list of
contacts until reaching the appropriate contact name.
The number type was selected in a subsequent sub-
menu if necessary. Finally, when calling a contact
using the Galaxy S4 visual-manual interface, the driver
began by touching a Contacts icon on the device’s
home screen to access the phone list. Then the driver
swiped the phone’s touchscreen to scroll to the
appropriate contact. A number type was selected on a
subsequent screen if necessary.

Full details on the embedded vehicle interfaces are
provided in Mehler et al. (2016) and on the smart-
phone interface in Reimer, Mehler et al. (2016). In
brief, a phone list of 108 contacts was used for all
phone calling tasks. Participants were asked to place
two calls for contacts having a single phone number,
followed by two calls for contacts having multiple
numbers (e.g. home and mobile), for a total of four
calling trials per interface, 16 total calls to place per
participant. The contacts were the same across the
manual and voice interface interactions so that any
aspects/characteristics of a particular contact name
that might influence relative difficulty were constant
(e.g. alphabetic location). Similarly, tasks were struc-
tured so that the start point in a contact list and other
aspects of task initiation were consistent across partici-
pants and tasks. Presentation order of the four meth-
ods of placing calls was randomised across the sample
to control for order effects of calling method.

2.4. Experimental protocol, driving environment
and analysis periods

After a structured interview was conducted to confirm
eligibility, participants reviewed and signed an
informed consent and received training on either the
embedded vehicle interface or the smartphone that
took place in the facility’s parking lot. Half of the par-
ticipants were trained on and interacted with the
embedded interface during the first half of the experi-
ment and half during the second half. Similarly, pres-
entation of the voice and manual versions of each
phone contact calling task types were randomised
across participants in a counterbalanced design
(Figure 1). During training, participants were encour-
aged to repeat tasks until they felt comfortable to pro-
ceed. The initial orientation/training period typically
ranged between 15 and 30min, with a mean of
approximately 20min. Training for the second half of
the study took place in a parking lot of a highway
rest area.
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An adaptation period of approximately 30min of
driving took place prior to starting formal assessment,
consisting of approximately 10min of urban driving
from MIT to interstate highway I–93 and 20min driving
north on I–93 to I–495. For the highway segments con-
sidered in the analysis, I–495 is a divided interstate sur-
rounded largely by forest with three traffic lanes in each
direction with lane widths of 15 feet (3.62m). The
posted speed limit is 65mph (104.6 kph). The north and
south segments of I–495 each took most participants
approximately 35 to 40min to drive (70 to 80min total).

Baseline driving reference samples were collected
during two minute periods immediately prior to a
recorded audio message indicating that each new task
period was about to start (Figure 1). Drivers were not
given any secondary tasks during the baseline periods.
Only the four baselines immediately prior to each phone
contact calling period were included in the present ana-
lysis. For the phone contact calling periods, only inter-
vals directly associated with placing a call were
considered in the glance analysis; intervals during which
recorded audio prompts cued participants on the con-
tact to call and intervals between when one call was
completed and the next prompt were excluded.

2.5. Annotation of visual behaviour and
data processing

The glance annotation methodology used in this study
is based on similar procedures developed by the
Crash Avoidance Metrics Partnership (CAMP) Driver
Workload Metrics project (Angell et al. 2006) and
detailed in Smith et al. (2005). Specifically, two
research assistants independently coded each driver’s
eye movements during phone contact calling trials
and baseline driving periods by labelling a driver’s

glance targets according to one of the following
glance regions: left blind spot, left (mirror/window),
instrument cluster, forward road (road), rear-view mir-
ror, centre stack, right rear passenger seat region
(where an experimenter sat), right (mirror/window),
right blind spot, other, and unknown. Annotators
worked from a multi-image viewer that included the
feed from the face camera, an over-the-shoulder view
of the side of the driver’s face, their hands, the steer-
ing wheel and the centre console region, as well as a
forward view of the roadway for added context.
Glance annotations were compared to check for dis-
crepancies between the coders. A trial was considered
discrepant if any of the following occurred: the coders
started or ended their coding at different times; the
coders described differing numbers of glances; the
coders identified a different glance target for a glance;
or the timing of a glance differed by more than
200ms. A third coder resolved any discrepancies, mak-
ing a ‘final determination’ as to which of the original
two coders was correct.

A small percentage of task video was deemed
unsuitable for coding, whether due to a momentary
degradation of video quality (usually due to over- or
under-exposure resulting from sudden changes in ambi-
ent lighting) or a transient movement of the partici-
pant’s eyes beyond the frame of the video. Five percent
of the task epochs under study contain at least some
‘uncodable’ segments, comprising 0.59% of the total
video time coded for this analysis. Any such segments
were removed from the data set prior to analysis.

2.6. Attention map visualizations

Mu~noz, Reimer, and Mehler (2015) proposed a set of
methods for considering and visualising the

Figure 1. Schematic representation of the full experimental protocol. Half of the participants interacted with the embedded
vehicle systems on I-495 South and half with the smartphone. Device type (embedded or smartphone) was reversed for the I–495
North segment so that all participants experienced both types (adapted from Reimer et al. 2016).
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distribution of glance behaviour as flow of attention
across defined regions of space. The most basic form
of these ‘attention maps’ consists of a matrix repre-
senting simple transition counts (see Figure 2) of glan-
ces FROM one defined glance region (arranged as a
row in the matrix) TO a different defined region (a col-
umn in the matrix). As described in the paper, the
transition counts can be normalised into a transition
probability matrix that indicates for any given glance
region, the relative frequency that glances transition
to another defined region. This is obtained by dividing
the transition counts between regions (each cell) by
its row sum (total number of transitions from a given
location to all other locations). The resulting row sums
in the new matrix all equal one. (See Appendix A for
representative calculations and images of the primary
new matrices described.)

One limitation of this probability matrix visualisa-
tion is that it fails to consider the overall significance
of a transition from a particular region relative to the
totality of glances observed. For example, in the data-
set shown in Figure 2, the vast majority of glance tran-
sitions take place between the forward roadway and
the centre stack and vice-versa. As detailed in

Appendix A, if a glance originated on-road, the prob-
ability that it transitioned to the centre stack was very
high (slightly greater than 93%). In contrast, in this
dataset that considers glances in the Chevrolet
Embedded Manual Calling task, one glance transition
was observed to take place from the left blind spot to
the road. As all the transitions from the left blind spot
were to the road, the probability of transitioning from
the left blind spot to the road was 100%. Without fur-
ther normalisation across the entire matrix, this one
transition gets outsized attention. To adjust for this, a
transition significance matrix is computed. Starting
again with the basic transition count matrix, this is
accomplished by first dividing the transition counts
between regions (each cell) by the maximum
observed count (the cell with the largest number of
transitions in the entire matrix) to create a transition
importance matrix. Each cell in the transition import-
ance matrix is then multiplied by the corresponding
cell in the transition probability matrix to create its
transition significance. In the example considered here
(Figure 2), there are 4636 transitions from the road to
the centre stack, a total of 4968 glances away from
the road (row sum), and a total of 4647 glances from

Figure 2. An attention map showing glance transition counts FROM (rows) and TO (columns) defined regions for the Chevrolet
Embedded Manual Calling condition. Warm colours (e.g. red) indicate transition patterns of relatively high count, while cool col-
ours (e.g. blue) are of lower count.
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the centre stack to the road (maximum number of
transitions between any two regions). As such, the
transition significance for movements from the road
to the centre stack is computed as (4636/4968) �
(4636/4647) ¼ .93. In contrast, the significance value
for the single glance between the left blind spot and
the road becomes .00 in the resulting transition signifi-
cance matrix (see Appendix A for a visual representa-
tion of this example and further consideration of the
objective of the Transition Significance Matrix). These
transition significance matrices are used for presenta-
tion in the results section. Across all matrices, colour
codes (or shading) can then be used to visualise the
most probable and frequent transitions (dark red) and
least probable and frequent (dark blue).

2.7. Hidden Markov modelling

Hidden Markov models (HMMs) can be used to extract
the statistical patterns of a sequence of glances to

various glance regions for a set of participants per-
forming a task. First, a model is trained for each task
type (baseline driving, voice-based phone contact call-
ing, and visual–manual phone contact calling). The
trained models aim to learn how to describe a given
type of task by the likelihood of glances between a set
of regions by encoding probabilities of transition
between a set of ‘hidden’ states. Note that the HMMs
do not consider the duration of events and, thus, it is
the sequence of glances between regions rather than
the length of glances that is analysed. The likelihood
that a separate sequence of glances (from a known
type of task) is best associated with one of the trained
models can then be assessed. The sequence is cor-
rectly classified when the trained HMM providing the
best fit for ’new’ data represents the same type of task.
While statistical assessment of accuracy was not per-
formed in the present work, model accuracy is here
defined as the ratio of correct classifications, and con-
fusion matrixes can be created to tabulate the number

Figure 3. Monte Carlo accuracy approximation procedure. (See text for detailed explanation.).
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of correctly classified sequences vs. incorrectly classi-
fied sequences for each task type.

The main parameter of the model is the number of
hidden states with which to learn the behavioural
transitions of visual demand. Mu~noz, Reimer, and
Mehler (2015) found two state HMMs maximised clas-
sification performance in prediction of baseline driving
versus voice-based and visual-manual interactions with
a radio and was employed in this study. A second
model parameter is the minimum number of glances
in a sequence (epoch of baseline period or individual
task trial) necessary to be included in the analysis.
Empirical assessment of the dataset suggested that
sequences of 6 or more glances (minimum of 5 transi-
tions) offered the best ratio of performance and qual-
ity-of-data, and was used in this analysis (see
Appendix B for a detailed consideration). Sequences
with fewer than six glances (5 transitions) were dis-
carded from the analysis; otherwise, they were left at
their natural length.

Figure 3 summarises the methodology used to
develop the accuracy measure for the approach
described above. From the pool of participants, 80%
were randomly sampled as training cases, with the
remaining 20% serving as validation (testing) cases. As
an example, for a given vehicle’s embedded interface,
the maximum potential pool of 400 glance sequences
(40 participants x 10 periods (i.e. 4 voice-based con-
tact calling tasks þ 4 manual contact calling tasks þ 2
baseline periods)) results in a potential of 320 training
sequences and 80 validation sequences. However, the
number of actual sequences was limited by the min-
imum successive glance count discussed in the pre-
ceding paragraph. All glance sequences meeting the
minimum length requirement (5 or more transitions)
for the randomly selected training cases were used to
train one HMM for each type of task (baseline driving,
voice phone contact calling, and visual-manual phone
contact calling) using the Chevy MyLink, Volvo Sensus,
and the smartphone. Next, the trained HMMs were
used to model the glance allocation sequences for the
validation data. The number of correctly classified
sequences were counted and used to compute accur-
acy. This procedure was repeated a total of 50 times
to reduce bias associated with the random assignment
of participants, resulting in an accuracy distribution
(shown in the Results as Figure 5) rather than simply a
single value. The selection of 50 repetitions was
empirically chosen to ensure a fair amount of shuf-
fling, while at the same time keeping total training
and validation times within reason. This Monte Carlo
accuracy approximation was repeated for every

combination of vehicle and type of interface
(embedded vs. smartphone), producing a total of 6
accuracy distributions for comparison.

3. Results

Statistical analyses were performed in R (R Core Team
2014) and an alpha level of 0.05 was used for assess-
ing statistical significance. Owing to the non-normal
distribution of the data and/or the use of ratio data
(percentages) for several dependent measures, non-
parametric statistics were calculated using the
Friedman test (X2) and Wilcoxon signed rank test (V),
similar to the repeated-measures ANOVA and t-test,
respectively. For multifactorial analyses, repeated-
measures ANOVA by ranks are presented. These tests
have been shown to be more robust against Type I
error in cases where data are non-normal (Friedman
1937; Conover and Iman 1981).

3.1. Characterisation of glances in terms of
duration off the forward road scene

NHTSA (2013) guidelines for assessing visual-manual
in-vehicle electronic devices evaluate visual demand
based on the mean duration of a single glance away
from the forward road, the percentage of the total
number of glances longer than 2.0 s, and the total dur-
ation of glances away from the forward road. These
measures were used to examine the differences in
glance behaviour between ‘just driving’ baseline
behaviour and when drivers used voice commands or
a visual-manual interface to select and place calls from
a phone contacts list.

The average single glance duration and average
percentage of glances away from the forward road
that are longer than two seconds during baseline peri-
ods, voice-based phone calling, and visual-manual
phone calling by vehicle and device are shown in
Table 1. (Note that for the percentage of long dur-
ation glances columns, a value less than 1 indicate
that, on average, less than 1% of the glances per par-
ticipant had durations longer than two seconds.)
Analyses revealed significant main effects across con-
ditions (baseline, voice, and manual) for mean single
glance duration (X2 (2) ¼ 119.28, p< 0.001) and the
percentage of long duration glances off the forward
road (X2 (2) ¼ 84.38, p< 0.001). Post hoc pairwise com-
parisons showed that mean single glance durations
were, on average, significantly longer during interac-
tions with visual-manual interfaces than during base-
line driving (V¼ 0.00, p< 0.001) and during interaction
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with voice-based interfaces (V¼ 3239, p< 0.001); no
significant difference was observed between baseline
driving and during interactions with voice-based inter-
faces (V¼ 1262, p< 0.086). Similarly, post hoc pairwise
comparisons showed that the percentage of long dur-
ation glances were, on average, significantly greater
during interactions with visual–manual interfaces than
during baseline driving (V¼ 7, p< 0.001) and during
interactions with voice-based interfaces (V¼ 1696,
p¼ 0.001); no significant difference was observed
between baseline driving and during interactions with
voice-based interfaces (V¼ 221, p¼ 0.603).

Collapsing across embedded HMIs and smartphone
interactions, there was a main effect across conditions
(baseline, voice, and manual) on the total amount of
time the driver’s eyes were away from the forward
road (X2 (2) ¼ 44.17, p< 0.001). Post-hoc pairwise
comparisons indicated that the total eyes off road
time (TEORT) was significantly longer when drivers
used a visual–manual interface than a voice-based
interaction (V¼ 3011, p< 0.001). However, comparison
of the TEORT values for the two interface modes to
baseline driving is problematic due to fact that the
two-minute baseline period represents a somewhat
arbitrarily selected duration relative to the variable
length of the actual HMI task periods. Considering the
baseline period as a task, pairwise comparisons show
TEORT for manual interface interactions being signifi-
cantly greater with a mean of approximately 14.8 s (for
periods averaging 28.8 s) than the mean TEORT of
approximately 12.7 s for the 120 s baseline periods
(V¼ 986, p¼ 0.002). Conversely, the mean TEORT of
approximately 10.1 s (for periods averaging 41.9 s) for

the voice-based interactions is significantly less, on
average, in a pairwise comparison than mean TEORT
for the baseline driving periods (V¼ 2329, p< 0.001).

The right most columns in Table 2 represent one
approach to dealing with the unequal time intervals,
specifically by normalising off-road glance time as a
percentage of the duration of individual task periods.
Using these values shows an overall main effect of
condition (X2 (2) ¼ 154.22, p< 0.001) and all pairwise
comparisons are significantly different: manual vs.
voice (V¼ 3240, p< 0.001), manual vs. baseline (V¼ 0,
p< 0.001), and voice vs. baseline (V¼ 36, p< 0.001).
These data highlight that the visual–manual HMI inter-
actions, on average, drew glance orientation away
from the forward road for approximately 50% or more
of the duration of the task. The voice-based HMI inter-
actions resulted in the eyes being directed off the for-
ward road for approximately 23% of the task period vs.
approximately 11% of the time during baseline driving.
While this normalisation may, in some ways, provide a
more appropriate metric for quantifying visual demand
of each type of HMI interaction to baseline driving
than TEORT values based on an arbitrary length sam-
ple of baseline driving, observation of drivers engaging
with the HMIs suggested that there are additional
aspects of how drivers allocate their glance behaviour
during the task periods that are relevant in comparing
these modes of interaction to baseline driving.

3.2. Attention map visualizations

Figure 4 shows a set of glance transition significance
matrices comparing glance patterning across the two

Table 1. Mean and (standard error) of ‘off-road’ (away from the-forward-road) glance metrics for mean single
glance duration (in seconds) and percentage of glances that are longer than two seconds during baseline
(Base), voice-based (Voice), and visual-manual (Man.) phone contact calling.

Interface

Mean Single Glance Duration % Long Duration Glances

Base Voice Man. Base Voice Man.

Volvo Embedded 0.70 (0.2) 0.79 (0.1) 0.94 (0.2) 0.70 (2.3) 0.75 (1.9) 3.39 (5.6)
Chevrolet Embedded 0.66 (0.1) 0.60 (0.2) 0.92 (0.2) 0.22 (0.7) 0.29 (1.5) 2.46 (3.7)
Volvo Smartphone 0.67 (0.1) 0.71 (0.2) 1.01 (0.2) 0.30 (1.1) 0.52 (1.5) 4.18 (6.2)
Chevrolet Smartphone 0.65 (0.1) 0.67 (0.2) 1.00 (0.2) 0.31 (0.9) 0.36 (0.9) 3.81 (4.5)

Table 2. Mean and (standard error) of total eyes off road time (TEORT) (‘off-road’ ¼ away from the forward road), task duration,
and TEORT values normalised as a percentage of period under study: baseline (Base), voice-based (Voice), and visual-manual
(Man.) phone contact calling.

Interface

Total ‘Off-Road’ Glance Time (seconds) Task Duration (seconds) % ‘Off-Road’ Time

Base Voice Man. Base Voice Man. Base Voice Man.

Volvo Embedded 12.64 (6.0) 10.22 (4.3) 16.39 (6.6) 120 38.17 (6.9) 32.90 (12.8) 10.56 (5.1) 26.23 (9.6) 49.71 (10.3)
Chevrolet Embedded 13.73 (7.8) 3.33 (2.6) 13.63 (5.3) 120 21.61 (8.3) 26.24 (7.6) 11.57 (6.5) 13.95 (7.2) 52.02 (10.9)
Volvo Smartphone 11.91 (7.5) 12.98 (7.4) 14.39 (5.8) 120 52.02 (12.9) 28.67 (9.8) 10.25 (6.3) 23.67 (9.9) 50.86 (11.3)
Chevrolet Smartphone 12.44 (6.4) 13.70 (7.1) 14.76 (5.7) 120 55.83 (16.0) 27.45 (9.7) 10.48 (5.4) 26.23 (9.6) 54.45 (11.0)
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vehicles during baseline driving, embedded voice-
based phone contact calling tasks, and embedded vis-
ual-manual phone contact calling tasks. As described
in the methods, high-intensity cells (warm colours, e.g.
red) indicate transition patterns of relatively high
probability and high frequency in each condition,

while lower intensity cells (cool colours, e.g. blue) are
of lower probability and frequency. Considering all of
the matrices together, it can be observed that, rela-
tively speaking, there is a fair degree of similarity
across the two vehicles in the pattern of glance transi-
tions for each of the three conditions (baseline, voice

Figure 4. Glance transition significance matrices for baseline driving (top), voice-based phone contact calling tasks (middle), and
visual-manual phone contact calling tasks (bottom) using the Chevrolet (left) and Volvo (right) embedded systems. Warm colours
(e.g. red) indicate transition patterns of relatively high probability and frequency, while cool colours (e.g. blue) are of lower prob-
ability and frequency.

1438 B. REIMER ET AL.



HMI, visual-manual HMI). Further, the pattern for the
voice-based HMI tasks looks more similar to the pat-
tern observed for baseline driving than the pattern
observed for the visual-manual HMI tasks. Specifically,
when using the visual-manual interfaces for phone
contact calling, glance transitions are almost exclu-
sively from the forward road to the centre stack and
from the centre stack back to the forward road. In
contrast, while drivers engaged with the voice-based
phone contact calling task directed a high proportion
of their off-road glances to the centre stack, a notable
proportion of their off-road glances were to driving
relevant locations (e.g. driver side window and mirror
region, and rear-view mirror), more like what was
observed during baseline driving periods.

The attention maps for the periods during which
the smartphone visual-manual interface was used in
each vehicle look very similar to those for the
embedded vehicle visual-manual interfaces (Appendix
Figure C1 and Figure C3). The attention maps for the
periods during which the smartphone voice-based
interface was used in each vehicle again look closer to
those for baseline driving than is the case for the vis-
ual-manual interfaces (Figure C1), but the smartphone
voice-based interactions do not show the same
breadth of glances to other driving relevant locations
as is seen with the embedded voice-based systems
(Appendix Figure C2).

3.3. Hidden Markov modelling

Three Hidden Markov Models (baseline, manual, and
voice) were individually trained on glance transition
data following the procedure described in Section 2.7.
Figure 5 presents a graphical view of HMM perform-
ance where specified datasets are aligned along the
x-axis and the y-axis reflects the ratio of correctly clas-
sified glance sequences vs. total available sequences
across 50 random splits of a dataset. The number
under each dataset name indicates the average num-
ber of glance sequences per split that met the min-
imum established length for inclusion in the analysis
(see Section 2.7); the maximum possible for each of
the individual sets was 80 and was 160 for combined
sets. In the plots for each dataset, each point repre-
sents the accuracy obtained for one of the 50 random
splits. One standard deviation is represented by the
larger rectangular box within each plot, the 95% confi-
dence interval by the lighter internal box, and the
mean by the horizontal line. A steady performance of
about 70% may be observed (in particular for the
smartphone interface), well above the random

guessing expectation of 33%. More variation in cor-
rectness of classification is observed for the embedded
interfaces, which is likely associated with the
embedded interfaces being substantially different
whereas the same smartphone was utilised in the two
vehicles. In particular, glance sequences stemming
from the Chevrolet interface seem, under visual
inspection, to be more recognisable (i.e. having higher
central tendency characteristics, although the range of
values is also greater) than those associated with the
Volvo interface.

As noted earlier, the number of sequences for each
modelling run varied (maximum possible of 80 for sin-
gle vehicle plots and 160 for two-vehicle plots) based
upon the sequence length limitations. The average
number of validation sequences considered across all
random splits of each modelling case appear along
the X-axis of Figure 5 (note that the values are frac-
tional as they represent an average across the 50 iter-
ations of random sampling). It can be observed that
the average number of available sequences was close
to 79; a loss on average of only one glance sequence
from each validation set. The average number of avail-
able validation sequences was somewhat lower for the
Chevrolet embedded system, with approximately 14%
of the potential sequences not included in the

Figure 5. Accuracy distributions (y-axis) for a set of Hidden
Markov Models trained individually on glance transitions for
baseline driving, voice-based phone contact calling, and man-
ual phone contact calling for the datasets arranged across the
x-axis. The number under each dataset name indicates the
average number of glance sequences over the 50 randomised
splits that met minimum length criteria (see Section 2.7)
where 80 was the maximum potential value for individual sets
and 160 for combined sets. (See Section 3.3 for additional
description of figure.).
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analysis, largely due to their length being less than
the inclusion threshold (see Appendix B).

Figure 6 presents an approach for more closely
examining the characteristics of the cases of
misclassification in the HMMs. These confusion matri-
ces give the average number of sequences that were
either (1) correctly classified, i.e. lay on the diagonal,
or (2) were known to belong to a specific class

(baseline, voice-based phone contact calling, or visual-
manual phone contact calling), but were misclassified
as pertaining to one of the two other classes. As
would be expected, the confusion matrices in the
right column are quite similar as they represent base-
line driving and interaction with the same smartphone
interfaces in the Volvo (top row) and Chevrolet (mid-
dle row) datasets. Greater variation can be observed in

Figure 6. Confusion matrices for the classification of embedded system tasks (left column) and smartphone tasks (right column)
in the Volvo (top row), Chevrolet (middle row), and both vehicles combined (bottom row). Lighter grey shading indicates greater
degrees of misclassification where 100% corresponds to no confusion for the upper left to lower right diagonal and 0% for the
remaining regions. These results correspond to the average over 50 runs.
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the left column where baseline driving and interaction
with the two different embedded vehicle interfaces
are considered.

Across the top four matrices, correct classification
of baseline driving ranges from an average 70.4% in
the Chevrolet embedded interface dataset to 96.8% in
the Chevrolet smartphone interface dataset. The very
high correct classification average (96.8%) for baseline
driving in both smartphone interface datasets indi-
cates that interacting with smartphone interface for
both the voice-based and the visual–manual based
interface of this device resulted in a pattern of glance
transitions on and off the forward road that was quite
distinct from baseline driving. The source of the
higher misclassification rates for baseline driving in
the embedded interface datasets is quite informative.
Note that misclassification of visual-manual phone
contact calling as baseline driving across all datasets is
very low (mean rate ranging from 0.0 for all smart-
phone cases to 0.5% for the combined embedded
cases). Misclassification of voice-based interaction as
baseline driving was lowest in the smartphone data-
sets, averaging only 4.0% across the two vehicles, and
was only slightly higher for the Volvo embedded
voice-based contact calling (7.3%). In contrast, voice-
based contact calling was misclassified as baseline for
35.7% of glance sequences with the Chevrolet
embedded voice-based interface. In other words, the
sequence of glance transitions observed during voice-
based interaction with this embedded interface was
relatively often ‘confused’ with the observed pattern
of glance transitions occurring during baseline driving.

4. Discussion

The attention maps and confusion matrices resulting
from the hidden Markov modelling reported in this
study illustrate differences in glance behaviours when
drivers were using voice-based interfaces relative to
visual-manual interfaces, and how glance behaviour
during voice-based tasks were more similar to glance
behaviour during baseline driving than that observed
during visual-manual interface tasks. Specifically, in the
attention maps, the pattern of glances away from the
forward road towards situationally relevant in-vehicle
information (mirrors, instrument cluster, etc.) when
drivers completed a voice-based phone contact calling
task shows similarities to the patterns observed during
baseline driving. In contrast, glances observed during
the visual-manual interface tasks were limited almost
exclusively to transitions back and forth between the
forward road and the physical interface. In the HMM

based confusion matrices for the embedded systems,
instances of drivers engaging in the voice-based inter-
face were ‘mistaken’ for glance behaviour associated
with ‘just driving’ approximately one-third of the time
in the Chevrolet; this result was much less frequent
for the voice-based interaction in the Volvo.

These findings extend upon the original work by
Mu~noz, Reimer, and Mehler (2015) and Mu~noz et al.
(2016) that drew upon glance data collected across
156 drivers in an unmodified production vehicle dur-
ing baseline highway driving and during interactions
with a visual-manual interface as well as an alternate
voice-based interface for the vehicle radio. This work
also describes an effective method for incorporating
glance time as an input to the model. The present
work addresses the question of replication and gener-
alisability by evaluating on-road glance data in a new
sample of 80 participants driving two different produc-
tion vehicles, using the vehicles’ embedded user inter-
faces as well as a dash mounted smartphone, and
considering stored phone contact calling as the sec-
ondary task (Mehler et al. 2016; Reimer et al. 2016). By
replicating and extending upon this earlier work, the
present study further makes the case for both the
basic findings and the utility of the methodology for
characterising important differences in driver behav-
iour that arise from interaction with different HMI
implementations.

Conventional glance metrics used to evaluate the
visual-manual interfaces of embedded in-vehicle elec-
tronic devices (mean single glance duration, percent-
age of glances longer than two seconds, and total
time the eyes are directed off the forward road)
(NHTSA 2012, 2013) only consider whether the driver’s
eyes are on the forward road or off it. This simplifica-
tion of glance allocations appears quite reasonable for
the visual-manual interfaces evaluated since off-road
glances were constrained almost entirely to the visual-
manual interface. However, these metrics may not
adequately characterise how drivers allocate visual
attention when interacting with voice-based or other
multi-modal interfaces. On the one hand, in the cur-
rent study, mean single glance duration and the per-
centage of long duration glances off the forward road
were significantly less when engaging with the voice-
based interfaces compared with using the visual-
manual interfaces. This was true in both vehicles, and
for both the embedded interfaces and the mounted
smartphone. Further, the mean values for these two
metrics were largely indistinguishable for glances asso-
ciated with interaction with the voice-based interfaces
and off-road glances that occurred during single task,
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baseline driving. These findings are in-line with previ-
ous work cited in the introduction showing reductions
in visual demand associated with voice-based interfa-
ces relative to visual-manual alternatives. It also
extends upon much of that work by quantifying the
similarity of the values obtained for these two metrics
for the voice-based task periods and baseline driving.

On the other hand, interpreting the meaning of the
values obtained for the total amount of time that the
drivers’ eyes were directed off the forward road is a
more open question. As highlighted in Table 2, TEORT
is immediately problematic for characterising glance
behaviour during baseline driving since the value will
inherently increase or decreasing depending on how
long a sample is selected to consider as the baseline
reference period. Attempting to normalise TEORT in
some manner as represented by the percentage of
off-road glance time in Table 2 provides an interesting
perspective on the relative concentration of off the
forward road glances during a period of interest, but
is hard to interpret in an absolute measure sense as a
safety relevant metric. For example, while a high per-
centage of off-road glance time is concerning for lon-
ger tasks, is it a problem if a high percentage of a
short task interaction consists of off-road glances?

Setting aside for the moment the problem of apply-
ing TEORT to baseline data, for both vehicle’s
embedded interfaces and the smartphone, TEORT for
the forward road were, on average, less than when
interacting with the voice-based interface options
than when using the visual-manual alternatives. This is
particularly notable in the case of the Chevrolet
embedded interface with a mean TEORT value of 3.3 s
for the voice-based interface vs 13.6 s for the
embedded visual-manual interface. The other vehicle
and the smartphone interfaces were associated with
longer mean total glance times, and also longer total
task durations. Relatively ‘long’ TEORT is particularly
evident when voice-based interfaces are used for
more involved, multi-step tasks such entering destin-
ation addresses into a navigation system (Reimer and
Mehler 2013; Reimer et al. 2014; Mehler et al. 2016;
Mehler et al. 2016). These latter types of interfaces
generally would not meet the NHTSA guidelines for
TEORT if they were to be applied. In this regard, it
should be emphasised that both the NHTSA guidelines
and the earlier AAM guidelines (DFTWG 2006) make it
clear that there may be issues in applying the respect-
ive guidelines to voice-involved interfaces.

The attention map analysis presents one line of evi-
dence for why the TEORT guidance for visual-manual
interfaces may not be applicable in the same manner

for voice-based, and possibly other multi-modal inter-
faces. The transition significance matrices in Figure 3
highlight that glance allocation during the voice-based
phone calling interactions with the two embedded
vehicle interfaces share some of the features of how
glances are distributed during single-task driving.
Specifically, in contrast with glance allocation when
interacting with a visual–manual interface, drivers
engaged with the voice-based phone contact calling
task were allocating some of their glances to driving
relevant locations, e.g. the rear-view mirror and to the
driver side window and mirror region. It would seem
that glances allocated to locations such as the rear-
view mirror, left window and left mirror region that
directly support a driver’s situational awareness of the
overall driving scene should not logically be counted
against the voice-based interface to the same extent
as off-road glances to the centre stack as is done in a
simple TEORT metric. The HMM classification of task
type based on glance sequences and the resulting
confusion matrices presented in Figure 5 provide a
complementary quantitative analysis of the glance
allocation patterns associated with baseline driving
and driving while engaged with one of the visual–ma-
nual interfaces or one of the voice-based systems
under study. It can be seen that glance allocation dur-
ing the visual-manual task periods is quite distinct
from that during single task driving and is almost
never misclassified as such. In contrast, the sequential
allocation of glances during voice-based multi-modal
task periods across the two embedded vehicle interfa-
ces was actually misclassified as single task, baseline
driving a little over 20% of the time. While glance allo-
cation patterns during the voice-based task periods
were not, on average, indistinguishable from glance
behaviour during single task driving, the confusion
matrix results combined with the attention map plots
indicate that they frequently share a number of similar
characteristics. The confusion matrix data, in particular,
suggests that some participants were able to interact
with the voice-based interfaces in a manner that pre-
served a glance pattern much like that generally
deployed when driving and not engaged in a second-
ary task. Thus, to the extent voice-based interfaces are
intended to support a distribution of glances more
like single task driving than is present with when
interacting with a pure visual-manual interface, the
present analysis along with the earlier work on radio
tuning shows some evidence in-line with that goal.

As detailed in the results section, the confusion
matrices provide objective values that may be useful
in identifying differences between individual interface
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implementations in addition to distinguishing between
the general classification of voice-based vs. visual-
manual. The matrices for the smartphone assessment
in the two different vehicles (right column in Figure 5)
generally show only relatively minor variations – in
spite of the fact that these are drawn on independent
samples of participants and the smartphone was
mounted somewhat differently in the two vehicles
(Reimer et al. 2016) to conform to a centre stack loca-
tion within the constraints of differences in each
vehicle’s internal layout. Note in particular that the
values across the smartphone baseline rows are
almost identical. This increases the confidence that dif-
ferences between matrices for the embedded interfa-
ces of the two vehicles carry information about how
differences in interface characteristics impact driver
behaviour as opposed to reflecting variation between
participants that make up the samples. Of the multiple
comparisons that can be made across the embedded
vehicle interfaces, perhaps the most interesting is the
finding that the glance transition sequences for the
voice-based phone contact calling in the Chevrolet
were confused and misclassified as baseline driving
36% of the time vs. only 7% for the Volvo. Thus, the
former interface, for this particular task, shows poten-
tial attentional advantages over the latter indicated by
the greater difficulty discriminating the secondary task
involved glance patterns from those observed during
baseline driving. This finding complements the metrics
showing shorter mean single glance duration, lower
percentage of long duration glances, and lower
TEORT. However, continued work is needed to assess
whether the attentional advantages identified in this
study reduce crashes associated with interaction with
electronic devices.

It can be observed that the smartphone voice-
based interface was identified as a voice interface
about half the time and confused as a visual-manual
interface about half the time in both vehicle samples.
This contrasts with the results for the two embedded
vehicle interfaces where, on average, the voice-based
interfaces were classified as voice-based 65% of the
time and confused as a visual-manual interface 14%.
This appears to reflect a commonality of some aspects
of glance behaviour across the two modes of the
mounted smartphone interface, further highlighting
that the extent to which a particular voice-based inter-
face shows visual-manual characteristics in how glan-
ces are distributed can vary depending upon the
overall implementation of the multi-modal design
(e.g. task structure, display size, etc.). It is an open
question as to whether a greater distinction between

the voice-based and visual-manual based modes
might be observed in hybrid implementations of a
smartphone interface that are integrated with the
embedded vehicle voice and visual-manual capabilities
(e.g. Apple CarPlay).

5. Conclusions

In summary, the confusion matrices clearly indicate
that the HMMs, trained upon condition-specific glance
transition data, were able to distinguish among single-
task baseline driving and secondary task conditions.
The aggregate accuracy of these classifications, which
range from 67% to 75% for the three condition classi-
fication, were based upon input sequences as short as
only five glance transitions. It is important here to
look beyond the present results, and understand that
such findings reveal that individual patterns of glance
behaviour contain information specific to each condi-
tion. That is to say that participants ‘just driving’,
selecting a contact from a stored phone list and plac-
ing a call using a visual-manual interface, or placing
the call using a voice-based interface are conditions
that each rely on information-gathering strategies that
produce discrete, identifiable glance patterns. These
findings reflect upon the descriptive richness of the
underlying transition matrices. In contrast to conven-
tional techniques for identifying patterns of driver
glance behaviour, these transitional matrices contain
no temporal data; instead they distil patterns of glan-
ces between different locations. As such, the present
work provides strong evidence that, as with glance
duration, glance switching patterns are distinct in dif-
ferent task combinations (just driving vs driving while
using an HMI) and between different interfaces (voice-
based vs. visual-manual interfaces in two vehicles).
Visual inspection of transition matrices, as presented
here, clearly shows this informational richness. The
present HMM-based method for abstracting this infor-
mation into confusion matrices is an initial effort to
quantify what is so visually salient in the attention
heat maps. While not perfect, this numerical approxi-
mation of the ability of HMMs to identify specific pat-
terns suggests that transition matrices may have both
theoretical and applied use. In application, interpret-
ation of transition matrices, both in the realm of
machine learning and classical statistics, is surely pos-
sible. The present data suggesting that attentional
allocation data contained in transitions can be used to
inform machine learning of user activity in relatively
short sequences of glance region-switches.
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While the transition matrices employed in this ana-
lysis capture important information on the spatial dis-
tribution and sequencing of glances that is overlooked
in TEORT, characterisations of how glances are distrib-
uted across time continue to be important and are
seen as complementary to the results presented. As
such, the assessment methods presented here are
seen as complementary to more traditional aggregate
measures (mean single glance duration, long duration
glance percentages) and emerging measures (see
Seppelt et al. 2017; also Lee et al. 2017; Seaman et al.
2017) in a holistic interpretation of DVI demands on
driver attention. Further refinement of the methods
presented is certainly possible and worthy of add-
itional investigation. In addition, while the voice-based
interfaces assessed in this study for voice-based phone
contact calling showed a number of glance related
advantages over the visual-manual methods,
voice-based interfaces must be evaluated broadly and
consideration given to both a specific task and imple-
mentation. For example, while the voice option in the
2013 Chevrolet Equinox MyLink infotainment system
showed a number of apparent advantages over the
2013 Volvo XC60 Sensus interface for phone contact
calling, the MyLink voice interface showed significantly
higher error rates than the Sensus system for entering
addresses into the navigation system and appeared to
negatively impact trust in and willingness to recom-
mend the system to others (Mehler et al. 2017).

As a final note, while it is reasonable to observe
that the specific interfaces studied here date from
2013 and that the implementations in these particu-
lar vehicle lines and in smartphone interfaces have
continued to evolve, the sensitivity of the methods
presented here for identifying underlying differences
in human engagement with overtly modest differen-
ces in design features have been demonstrated and
are extensible to studying HMIs now coming on-line.
It is an open question as to whether particular cur-
rent generation HMIs have advanced the preserva-
tion of safety relevant glance distribution patterns or
not. It is the hope of the authors that ergonomists
and human factors specialists will find the
approaches presented here add to the set of useful
tools for such assessment.

6. Future work

The use of HMM confusion between the voice-based
multi-modal interface and just driving as an indication
of greater similarity between these conditions is an
important avenue for further exploration. Because

Markov processes cannot be observed, we are here
unable to report certainty in presence or degree of
similarity, or discern which features of the data drive
similarity. As such, the present inference approach
may not be taken as a proxy for statistical inference.
Notably, there do exist approaches that allow the
computation of false negatives and false positives
within HMMs (Newberg 2009), and the application of
such approaches should be explored in future work.
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Appendix A: from transition counts to a
transition significance matrix

The differences between and the reasons for generating the
different transition matrix types can seem subtle. Section 2.6
provides a description of each and how it is calculated.
The reasoning for calculating the Transition Significance
Matrix is further described here for readers interested in
additional background.

The motivation for calculating the Transition Significance
Matrix is that the more typical transition matrix (Transition
Probability), which yields the probability of transitioning
from a given location J to another location K as a number
between 0 and 1, does NOT consider how representative the
probability is in real-world data. For example, during a radio
tuning task, transitions between the centre stack and the
forward roadway are frequent, while transitions to the pas-
senger seat are likely to not be as frequent. Going from the
source count matrix to a basic transition probability matrix
loses this information, yielding say 90% probability of
switching back to the centre stack if currently at the forward
roadway, and say 90% probability of switching to the for-
ward roadway if currently looking at the passenger seat. The
transition probability matrix summarises both behaviours
using the same number, irrespective of how frequent the
individual transition pairs were.

While the transition probability matrix can reveal interest-
ing information, it only provides half the picture. In order to
address this, the goal is to provide a measure for the extent
to which transition pairs are “important” in the overall
glance behaviour of the driver, ranking them on the scale of
0 to 1, with 1 being the “most important". This can be done
by dividing all elements of the transition probability matrix
by the maximum element in the matrix. Note, this is just
one possible metric for importance - dividing by the sum of
the entire matrix would work as well, as more frequent tran-
sition pairs will take up a higher percentage of this total
sum than pairs that were not as common. The same goal is
achieved, to differentiate them from each other.

The transition significance calculation is thus nothing
other than the element wise multiplication of the transition
probabilities with these importance values. The values are
also restricted between 0 and 1, and signal a relative import-
ance score that can now be compared across tasks and
experiments (i.e. we can now compare two of these matrices
with each other as the transition probability bias discussed
above is gone). Values that are high on the 0 to 1 scale
reflect transition pairs that are not just likely, but that also
appear frequently in the data. In the lower end of the
importance ranking are pairs that either are not very likely,
or simply did not appear often enough (proportionally
speaking with respect to the most frequent transitions) to
ensure a fair comparison.

Figure A1 details the individual matrices described in
Section 2.6 on Attention Map Visualisations
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Figure A1. Representative matrices for the Chevrolet Embedded Manual Calling condition.
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Appendix B: Setting a minimum length for
usable glance sequences

As summarised in the main body of the paper, a potentially
important parameter of the modelling framework considers
the conditions under which a given glance allocation
sequence is considered valid or useful. In the context of the
current work, this reduces to question of whether a min-
imum number of glance sequences should be present in a
given epoch (baseline period or individual task trial) before
including it when using an HMM approach to attempt to
distinguish the patterns of behaviour of interest. HMMs can
be characterised as ‘data-hungry’, typically classifying long,
expressive sequences more accurately than shorter ones.
Mu~noz, Reimer and Mehler (2015) evaluated the correlation
between the length of the individual sequences and classifi-
cation performance for visual-manual and voice radio tuning,
noting the trade-off between the length of individual
sequences and the expressivity of the final accuracy measure
as an artefact of the size of the available data set. Intuitively,
using longer sequences, though beneficial during training as
HMMs are able to profit from more expressive information
content, leaves fewer sequences for actual validation. In an
extreme case, this could make the accuracy metric un-
informative. On the other end of the spectrum, allowing
shorter sequences allows for more validation points, but
potentially feeds the models with less-descriptive samples
during training.

Mu~noz, Reimer and Mehler (2015) set an empirically-
determined threshold of a minimum of 11 glances (a sequence
of at least 10 transitions from one region to another) for all
training and validation sequences. For the present analysis,
optimisation of a minimum threshold was explored for the
dataset, seeking to maximise the number data samples avail-
able for comparison without harming model performance.
Starting with the minimum threshold of 11 glances sequences
per epoch, Table B1 shows the number of additional sequen-
ces that became available for inclusion in the modelling as the
minimum threshold was decreased. As this number of add-
itional sequences represents both training and validation
sequences, multiplying by a factor of 0.2 gives the additional
number of sequences available for validation.

In order to examine the sensitivity of the models in terms
of their discriminative potential as applied to sequences of
glance allocations for the phone contact calling tasks, the
approach described above was applied and repeated for a
subset of these thresholds. Average prediction accuracies from
each distribution were sampled for each dataset component,
and a final accuracy was produced by averaging these scores
across all components (Table B2). Overall, classification per-
formance seems to be rather insensitive to sequence length
for classification of baseline, manual and voice phone contact
calling profiles down to the minimum sequence length eval-
uated (4 glances; 3 transitions). Since using sequences with
lengths of 6 or more glances (5 transitions) offers the best per-
formance to quantity-of-data ratio, all subsequent HMM results
use this threshold.

Table B1. Total number of additional sequences available in the dataset as a function of the threshold selected for a minimum
number of glances, where 1 is equivalent to allowing all sequences in the modelling and validation procedures.
Threshold 11 10 9 8 7 6 5 4 3 1

Additional Sequences – 9 22 33 36 57 62 86 89 90

A threshold of 11 or more glances was used in Mu~noz et al. (2015).

Table B2. Prediction accuracies for different values of a minimum acceptable number of glances (11, 8, 6,
or 4) for including an observed set of glance transitions in the analysis.

Dataset

Minimum Acceptable Number of Glances in a Sequence

11 8 6 4

Volvo Embedded 0.69 0.66 0.67 0.66
Chevrolet Embedded 0.75 0.75 0.75 0.7
Volvo & Chevrolet Embedded 0.67 0.66 0.66 0.66
Volvo S.Phone 0.7 0.7 0.71 0.7
Chevrolet S.Phone 0.7 0.72 0.73 0.71
Volvo & Chevrolet S.Phone 0.7 0.69 0.72 0.68
Average 0.7016 0.6966 0.7066 0.685

(Note: a sequence of 6 glances corresponds to a sequence of 5 transitions.).
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Appendix C: Additional transition significance matrices visualizations

Transition significance matrices considering smartphone conditions

Figure C1. Glance transition significance matrices for baseline driving (top), voice-based phone contact calling tasks (middle), and
visual-manual phone contact calling tasks (bottom) using the smartphone interface while driving in the Chevrolet (left) and Volvo
(right). Warm colours (e.g. red) indicate transition patterns of relatively high probability and frequency, while cool colours
(e.g. blue) are of lower probability and frequency.
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Transition significance matrices for all Voice-Based interaction periods

Figure C2. Glance transition significance matrices for voice-based phone contact calling tasks in the Chevrolet and in the Volvo
using the embedded interfaces (top) and smartphone interface (bottom). Warm colours (e.g. red) indicate transition patterns of
relatively high probability and frequency, while cool colours (e.g. blue) are of lower probability and frequency.
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Transition significance matrices all Visual-Manual interaction periods

Figure C3. Glance transition significance matrices for visual-manual phone contact calling tasks in the Chevrolet and in the Volvo
using the embedded interfaces (top) and smartphone interface (bottom). Warm colours (e.g. red) indicate transition patterns of
relatively high probability and frequency, while cool colours (e.g. blue) are of lower probability and frequency.
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